Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 2 of 2 results
1.

Regulating bacterial behavior within hydrogels of tunable viscoelasticity.

blue YtvA E. coli Transgene expression
bioRxiv, 6 Jan 2022 DOI: 10.1101/2022.01.06.475183 Link to full text
Abstract: Engineered living materials (ELMs) are a new class of materials in which living organism incorporated into diffusive matrices uptake a fundamental role in material’s composition and function. Understanding how the spatial confinement in 3D affects the behavior of the embedded cells is crucial to design and predict ELM’s function, regulate and minimize their environmental impact and facilitate their translation into applied materials. This study investigates the growth and metabolic activity of bacteria within an associative hydrogel network (Pluronic-based) with mechanical properties that can be tuned by introducing a variable degree of acrylate crosslinks. Individual bacteria distributed in the hydrogel matrix at low density form functional colonies whose size is controlled by the extent of permanent crosslinks. With increasing stiffness and decreasing plasticity of the matrix, a decrease in colony volumes and an increase in their sphericity is observed. Protein production surprisingly follows a different pattern with higher production yields occurring in networks with intermediate permanent crosslinking degrees. These results demonstrate that, bacterial mechanosensitivity can be used to control and regulate the composition and function of ELMs by thoughtful design of the encapsulating matrix, and by following design criteria with interesting similarities to those developed for 3D culture of mammalian cells.
2.

Printed Degradable Optical Waveguides for Guiding Light into Tissue.

blue YtvA E. coli
Adv Funct Mater, 2 Sep 2020 DOI: 10.1002/adfm.202004327 Link to full text
Abstract: Optogenetics and photonic technologies are changing the future of medicine. To implement light‐based therapies in the clinic, patient‐friendly devices that can deliver light inside the body while offering tunable properties and compatibility with soft tissues are needed. Here extrusion printing of degradable, hydrogel‐based optical waveguides with optical losses as low as 0.1 dB cm−1 at visible wavelengths is described. Core‐only and core‐cladding fibers are printed at room temperature from polyethylene glycol (PEG)‐based and PEG/Pluronic precursors, and cured by in situ photopolymerization. The obtained waveguides are flexible, with mechanical properties tunable within a tissue‐compatible range. Degradation times are also tunable by adjusting the molar mass of the diacrylate gel precursors, which are synthesized by linking PEG diacrylate (PEGDA) with varying proportions of DL‐dithiothreitol (DTT). The printed waveguides are used to activate photochemical and optogenetic processes in close‐to‐physiological environments. Light‐triggered migration of cells in a photoresponsive 3D hydrogel and drug release from an optogenetically‐engineered living material by delivering light across >5 cm of muscle tissue are demonstrated. These results quantify the in vitro performance, and reflect the potential of the printed degradable fibers for in vivo and clinical applications.
Submit a new publication to our database